首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10481篇
  免费   852篇
  国内免费   575篇
  2023年   122篇
  2022年   133篇
  2021年   396篇
  2020年   295篇
  2019年   346篇
  2018年   360篇
  2017年   292篇
  2016年   480篇
  2015年   633篇
  2014年   748篇
  2013年   820篇
  2012年   981篇
  2011年   913篇
  2010年   566篇
  2009年   494篇
  2008年   584篇
  2007年   539篇
  2006年   464篇
  2005年   417篇
  2004年   362篇
  2003年   346篇
  2002年   316篇
  2001年   138篇
  2000年   136篇
  1999年   118篇
  1998年   87篇
  1997年   83篇
  1996年   67篇
  1995年   56篇
  1994年   64篇
  1993年   49篇
  1992年   62篇
  1991年   56篇
  1990年   51篇
  1989年   37篇
  1988年   26篇
  1987年   19篇
  1986年   32篇
  1985年   23篇
  1984年   29篇
  1983年   10篇
  1982年   16篇
  1981年   14篇
  1980年   13篇
  1979年   8篇
  1978年   8篇
  1977年   12篇
  1976年   11篇
  1975年   12篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Ren  Shanshan  Ahmed  Nauman  Bertels  Koen  Al-Ars  Zaid 《BMC genomics》2019,20(2):103-116
Background

Pairwise sequence alignment is widely used in many biological tools and applications. Existing GPU accelerated implementations mainly focus on calculating optimal alignment score and omit identifying the optimal alignment itself. In GATK HaplotypeCaller (HC), the semi-global pairwise sequence alignment with traceback has so far been difficult to accelerate effectively on GPUs.

Results

We first analyze the characteristics of the semi-global alignment with traceback in GATK HC and then propose a new algorithm that allows for retrieving the optimal alignment efficiently on GPUs. For the first stage, we choose intra-task parallelization model to calculate the position of the optimal alignment score and the backtracking matrix. Moreover, in the first stage, our GPU implementation also records the length of consecutive matches/mismatches in addition to lengths of consecutive insertions and deletions as in the CPU-based implementation. This helps efficiently retrieve the backtracking matrix to obtain the optimal alignment in the second stage.

Conclusions

Experimental results show that our alignment kernel with traceback is up to 80x and 14.14x faster than its CPU counterpart with synthetic datasets and real datasets, respectively. When integrated into GATK HC (alongside a GPU accelerated pair-HMMs forward kernel), the overall acceleration is 2.3x faster than the baseline GATK HC implementation, and 1.34x faster than the GATK HC implementation with the integrated GPU-based pair-HMMs forward algorithm. Although the methods proposed in this paper is to improve the performance of GATK HC, they can also be used in other pairwise alignments and applications.

  相似文献   
93.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   
94.
95.
Upland cotton (Gossypium hirsutum) is the world's largest source of natural fibre and dominates the global textile industry. Hybrid cotton varieties exhibit strong heterosis that confers high fibre yields, yet the genome‐wide effects of artificial selection that have influenced Upland cotton during its breeding history are poorly understood. Here, we resequenced Upland cotton genomes and constructed a variation map of an intact breeding pedigree comprising seven elite and 19 backbone parents. Compared to wild accessions, the 26 pedigree accessions underwent strong artificial selection during domestication that has resulted in reduced genetic diversity but stronger linkage disequilibrium and higher extents of selective sweeps. In contrast to the backbone parents, the elite parents have acquired significantly improved agronomic traits, with an especially pronounced increase in the lint percentage. Notably, identify by descent (IBD) tracking revealed that the elite parents inherited abundant beneficial trait segments and loci from the backbone parents and our combined analyses led to the identification of a core genomic segment which was inherited in the elite lines from the parents Zhong 7263 and Ejing 1 and that was strongly associated with lint percentage. Additionally, SNP correlation analysis of this core segment showed that a non‐synonymous SNP (A‐to‐G) site in a gene encoding the cell wall‐associated receptor‐like kinase 3 (GhWAKL3) protein was highly correlated with increased lint percentage. Our results substantially increase the valuable genomics resources available for future genetic and functional genomics studies of cotton and reveal insights that will facilitate yield increases in the molecular breeding of cotton.  相似文献   
96.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   
97.
Taking advantage of the compelling properties of d ‐penicillamine (d ‐PA) combined with copper, a method for the sensitive and selective determination of d ‐PA was established using copper nanocluster (Cu NC)‐based fluorescence enhancement. d ‐PA molecules containing a thiol compound showed a strong tendency to combine with the surface of Cu NCs, causing the re‐dispersion of nanoclusters and therefore fluorescence intensity was enhanced. Fluorescence enhancement efficiency of Cu NCs induced by d ‐PA was linear, with the d ‐PA concentration varying from 0.6–30 μg ml?1 (R2 = 0.9952) and with a detection limit of 0.54 μg ml?1. d ‐PA content in human urine samples was detected with recoveries of 104.8–112.99%. Fluorescence‐enhanced determination of d ‐PA using Cu NCs was established for the first time and this rapid, easy and sensitive method should attract much attention for this application.  相似文献   
98.
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.  相似文献   
99.
Cervical cancer is a serious threat to women’s health and is the third most common malignancy in women worldwide. Recent studies indicate that the long non-coding RNA CCAT1 plays a role in the malignant behavior of many tumors. However, the role of CCAT1 in cervical cancer is still unknown. Our aim is to evaluate the expression and investigate the regulatory role and potential mechanism of CCAT1 in cervical cancer. CCAT1 expression was measured by qRT-PCR. In addition, CCK-8 assays, colony formation assays, qRT-PCR assays, Transwell assays and xenograft experiments were performed to determine the role of CCAT1 in the proliferation and invasion in cervical cancer cells. The expression of CCAT1 in the cervical cancer tissues was higher than in the adjacent normal tissues. Overexpressing CCAT1 promoted cervical cancer cell proliferation, colony formation, and invasion in vitro. Elevated CCAT1 suppressed miR-181a expression, which was accompanied by an increased expression of MMP14 and HB-EGF. In contrast, knocking down CCAT1 resulted in increased expression of miR-181a, along with decreased expression of MMP14 and HB-EGF. Thus, CCAT1 is a key oncogenic lncRNA associated with cervical cancer and plays a role in promoting cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis.  相似文献   
100.
Emerging evidence has indicated that deregulation of long non‐coding RNAs (lncRNAs) can contribute to the progression of human cancers, including hepatocellular carcinoma (HCC). However, the role and exact mechanism of most lncRNAs in tumours remains largely unknown. In the current study, we found a novel long non‐coding RNA termed SNAI3‐AS1 which was generally up‐regulated in HCC tissues compared with normal control. Higher expression of SNAI3‐AS1 was significantly correlated with shorter overall survival of HCC patients. Knockdown of SNAI3‐AS1 inhibited the proliferation and metastasis of HCC cells in vitro, whereas overexpression of SNAI3‐AS1 promoted the proliferation and metastasis of HCC cells. Further investigations showed that SNAI3‐AS1 could affect HCC tumorigenesis by binding up‐frameshift protein 1 (UPF1), regulating Smad7 expression and activating TGF‐β/Smad pathway. Functionally, SNAI3‐AS1 promoted HCC growth and metastasis by inducing tumour epithelial to mesenchymal transition (EMT). Taken together, these findings showed that SNAI3‐AS1 promotes the progression of HCC by regulating the UPF1 and activating TGF‐β/Smad pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号